当前位置:首页 > 新闻公告 > 国际科技要闻 > 正文

2022年世界科技发展回顾 • 科技政策篇, 基础研究篇, 数字技术篇, 空间技术与宇宙探索篇, 生物医学篇, 能源环保篇,新材料篇

时间:2023-01-11 11:22 来源: 编辑:admin

核心提示

2022年世界科技发展回顾 • 科技政策篇原创 科技日报 科技日报 2023-01-03 12:01 发表于北京编者按经过酷热严寒,经过疫情肆虐,我们终于走过了跌宕起伏的2022年。地缘政治叠加气候灾...

2022年世界科技发展回顾 • 科技政策篇

 科技日报 科技日报 2023-01-03 12:01 发表于北京

编者按

经过酷热严寒,经过疫情肆虐,我们终于走过了跌宕起伏的2022年。地缘政治叠加气候灾难让世界主要国家在能源环保方面的目标更趋一致,清洁能源的开发与应用不断取得进展;在与疾病的斗争中,不同学科交叉汇聚共同钻研生命难题;看得见和看不见的硝烟阻断物流,催生信息技术带来虚拟与现实万物互联……在百年未有之大变局的背景下,科技发展成果如指路明灯,更加耀眼。


◎ 科技日报国际部


俄罗斯 Russia


开设30所先进工程师学院 加强技术研发和人才培养


2022年,为确保国家技术主权,俄罗斯制定了相关政策,以吸引年轻人进入科研领域,促进科研技术的发展,同时也加大了北极科研任务的力度。


4月,俄罗斯总统普京签发了《关于宣布俄罗斯联邦科学技术10年》的第231号总统令。这是2022年俄颁布的第一份科技政策文件。该总统令确定了未来10年俄罗斯科技发展的3大基本任务:吸引年轻人才进入科研领域;促进研发人员为国家和社会发展重大问题提供解决方案;提高公民对本国科学成果和远景的信息可达性。其目的是加强科技在解决国家和社会重大问题中的作用,为科研队伍注入新鲜血液,加强科普以激发民众投身科学研究,从而为国家发展作出贡献。


为确保国家技术主权,俄政府迅速调整先进技术研发和人才培养政策。俄将依托竞争力强的大学在15个联邦主体开设30所先进工程师学院,首批2500名专家将在2024年毕业;农业、机械制造、化学工业、航空和火箭太空技术、核能、医疗仪器和信息技术领域的40多个工业企业将参与该项目。俄政府副总理分工负责监管重要技术和领域的发展工作。


此外,俄制订了“北极-41”科考计划,科考队于9月乘“北极”抗冰平台前往北极。此次科考的主要目标是在北冰洋高纬度水域对“大气—冰盖—海洋”以年为周期进行综合研究,详尽描述北极地区气候系统发生变化的规律和原因,并预测未来几十年的变化趋势。


英国 The UK


打造科技大国 数字创新优先


2022年,英国提出新科技发展政策,旨在将本国打造成全球科技超级大国和创新国家,也加大了对数字创新、人工智能、6G等前沿技术的支持力度。


3月,英国研究与创新署发布《2022—2027年战略:共同改变未来》文件,这是为实现英国打造全球科技超级大国和创新国家目标而制定的第一个5年战略,提出了构建卓越科研体系的世界级战略目标,以及应采取的优先行动事项。其中包括使英国成为对全球人才和团队最有吸引力的国家,培养支撑未来研发工作的技能型人才和团队,支持政府开发新的“创新加速器”(孵化平台)模式,促进私营企业的投资,加速成果转化、商业化和知识交流,大力发展英国具有全球优势的7个技术领域:先进材料与制造,人工智能、数字和先进计算,生物信息学和基因组学,工程生物学,电子学、光子学和量子技术,能源、环境与气候技术,机器人和智能机器。


英国政府6月发布新版《数字战略》,旨在使英国成为全球开展数字创新的最佳地点,巩固英国作为全球科技超级大国的地位,明确了6大支柱:数字基础、创意和知识产权、数字技能和人才、资金、提升数字化水平、提高英国国际地位。12月,英国政府称,将投资1.1亿英镑用于研发包括6G在内的下一代技术的计划,以增强英国在电信研究领域的领先地位。


在人工智能方面,英国国防部6月发布《国防人工智能战略》,旨在通过前沿技术枢纽,支撑新兴技术的使用和创新,从而支持创建新的国防AI中心,力争实现英国“到2030年成为科技超级大国”的雄心。


日本 Japan


加强应对气变和疫苗研究 促进塑料资源循环利用


2022年,日本政府的科技政策主要集中于加强应对气候变化以及推进疫苗研究领域,同时,日本也制定了相关法律,促进塑料资源的循环利用。


2月,日本政府经内阁会议敲定《全球变暖对策推进法》修正案,主要着眼于促进地方政府和企业加大投入,助力达成政府提出的“减排”和“零排”两大目标——2030年较之2013年减少46%的碳排放以及到2050年实现温室气体零排放,达成“碳中和”以全面实现脱碳社会。


日本政府承诺将投资20亿美元开展疫苗研究,以确保日本能更好地应对未来可能到来的疫情。日本政府3月成立了“生物医药先进疫苗研发战略中心”。该中心将首先投资8种病原体,包括冠状病毒、猴痘、登革热和寨卡病毒的疫苗研究,使用一系列疫苗递送技术,如信使核糖核酸(mRNA)、病毒载体和重组蛋白技术等。其目标是:在发现具有大流行潜力的病原体后100天内,大规模开发出诊断、治疗方法和疫苗。该中心首批批准了两个项目,其中一个项目旨在开发出通用冠状病毒疫苗,以及应对与严重急性呼吸综合征(SARS)相关冠状病毒的疫苗;另一个项目将创建一个快速通道系统,用于评估候选疫苗。


日本政府内阁会议决定,为达成削减塑料制品的目标,根据新制定的《塑料资源循环促进法》,正式颁布政令规定商家有义务采取有效手段,减少使用12种一次性塑料制品。《塑料资源循环促进法》于4月1日开始正式实施。


美国 The US


推进多项创新政策 重视培养引进人才


2022年,美国制定了多项政策,以促进国防科技、6G、量子计算、芯片制造等领域的发展,同时,也强调注重人才培养。


在国防科技发展方面,美国防部2月发布备忘录称,将制定新科技战略投资种子技术、商业应用潜力大的技术和国防特需技术,具体包括量子科学、生物技术、先进材料、下一代无线技术、人工智能、空间技术、微电子、集成网络、可再生能源、人机接口、先进计算和软件、高超音速武器、定向能技术、网络和综合传感等14个关键技术领域。


美联邦通信委员会3月颁发首个亚太赫兹6G技术开发许可。6月,美国总统拜登宣布将签署两项指令以推进美国量子信息技术的发展。


在探索宇宙方面,美国国防部高级研究计划局(DARPA)5月上旬宣布,为其热核动力航天器演示计划第二、第三阶段征集提案。美国国家航空航天局(NASA)5月则公布了其为期30天的双人火星表面任务初步计划。NASA的目标是在本世纪30年代末或40年代初,将宇航员送至火星表面,并执行相关科学任务。6月,NASA更新阿耳忒弥斯探月计划,拟通过新工程仪器进行新的月球实验。NASA还与欧洲空间局签署合作协议,将加强地球科学领域及月球探索合作。


在环保科技政策方面,美国政府称,将采取多项措施促进国内清洁能源发展。拜登提出美国国家电动汽车充电网络计划,预计在高速公路及社区建设50万个充电桩。美能源部发布5790万美元项目计划,旨在资助工业减排、清洁能源技术发展。


在芯片制造方面,8月,拜登正式签署《2022年芯片和科技法案》,美国商务部随即于9月发布500亿美元芯片计划实施战略。


在鼓励科技发展和人才引进方面,美国政府1月推出新政策以吸引专攻科学、技术、工程和数学专业(STEM)的国际学生。8月底,美国白宫科技政策办公室(OSTP)发布政策指南,要求政府资助的研究项目成果免费开放给美国公民。10月底,美国国家科学基金会(NSF)宣布成立STEM教育专职部门(EDU),该部门在原有教育及人力资源局、人力资源开发局基础上改组成立,将专注于STEM教育方面的工作。


德国 Germany


确定六大关键领域 加大投入确保技术主权


以氢和可再生能源为核心的能源转型、强化前沿关键技术的技术主权等成为德国科技政策的重点。2022年10月,联邦教研部公布“研究与创新未来战略”草案,确定6个关键领域,这将成为德国未来的科研创新指导战略。


能源转型方面,德国政府一方面希望坚持淘汰煤炭、石油和天然气等石化燃料,到2045年实现碳中和;另一方面又必须应对短期内摆脱对外能源依赖难题,因此推出一系列政策,包括大力资助氢的研发和应用、努力发展可再生能源、强化国际合作确保能源供应安全等。


以氢为例,德国政府既资助氢能基础研究项目,也资助工业界主导的氢能旗舰项目。2022年9月启动的亥姆霍兹联合会氢创新集群项目(HC-H2),将研究、开发和展示大规模生产、储运和使用绿色氢的创新技术集于一体。国际合作方面,德国先后与澳大利亚、新西兰和加拿大签署了氢能合作协议,并与多个非洲国家洽谈绿氢生产合作。


德国希望在前沿关键技术领域,如人工智能、量子技术等领域加大投入,并与欧盟伙伴一起扩大欧洲的技术主权。2022年教研部推出了“量子系统研究计划”;经济部也在量子方面投资了7.4 亿欧元。此外,德国与其他15个欧盟国家联合成立拥有100亿欧元的欧洲技术冠军倡议(ETCI)基金,重点资助领先规模企业和科技公司。为了改进科技应用转化慢的局面,德国政府还专门成立了“德国转移与创新署”。


韩国 South Korea


指定12大国家战略技术 立法为发展保驾护航


韩国政府将半导体、显示器、动力电池等技术指定为“12大国家战略技术”,并为此增加了预算。同时,韩国政府正考虑制定《国家战略技术特别法》,为上述国家战略技术提供法律制度基础,以进一步加大支援力度。


2022年10月,韩国总统尹锡悦主持召开国家科学技术咨询会议,韩国科学技术信息通信部在该会议上正式发布国家战略技术培育方案,指定“12大国家战略技术”。


韩国科学技术信息通信部综合考虑产业全球竞争力、对未来产业影响力、外交与安全价值、取得成果的可能性等因素选定了12项战略技术。具体包括半导体和显示器、动力电池、高科技出行、新一代核能、高科技生物技术、宇宙太空及海洋、氢能源、网络安全、人工智能、新一代通信、高科技机器人及制造技术、量子技术。方案还提出了将在这些领域着力推进的50项具体重点技术。


韩国政府将上述战略技术的研发投资额在2022年的3.74万亿韩元基础上增加10%至4.12万亿韩元(约合人民币210亿元),并将在2023年的预算中为系统半导体、小型模块化反应堆(SMR)、5G开放式无线接入网络(Open RAN)、量子计算与传感器等技术研发专门划拨2651亿韩元。


以色列 Israel


扶持新兴初创企业 引进培养科技人才


以色列作为“创新国度”,高度重视对初创企业的扶持和对科技人才的引进及培养。2022年2月,以色列创新局启动新的孵化器计划,宣布将与运营商合作新建5个孵化器,分别瞄准替代蛋白质等食品科技,氢能、水处理等气候技术,精准和个性化医疗,太空技术与地面应用以及生物融合健康科技等5大新兴技术领域。这些孵化器预计将在未来建立150家高风险和颠覆性技术的高科技创新企业,每个企业可最高获得650万新谢克尔(约1300万人民币)的资助,其中60%—85%由以色列创新局支付。此外,每个孵化器还可建立一个研发实验室,预算达到400万新谢克尔,其中以色列创新局出资50%。


7月,以色列创新局宣布计划出资1500万新谢克尔,以建立新的人才引进和培养项目,增加以色列科技行业的人力资本。该计划主要针对半导体和超大规模集成电路、量子、人工智能、气候技术、食品技术、生物融合等科技领域,用于引进海外技术人才和加强本土人才职业培训。11月底,以创新局发布公告,宣布已遴选出15个人才引进和培养项目进行资助,总预算为3640万新谢克尔,其中1760万为公共资金,该计划将引进和培养2550名技术人才,目标是“保持以色列作为全球领先的创新中心的国际地位”。


巴西 Brazil


科创成为发展重心 加强国际科创合作


2022年,巴西将科技创新视为国家发展的重心,充分利用已有资源,在多元化思路的指引下,制定了创新创业政策,形成了以“资助—服务—奖励”为核心的政策体系,并通过发掘创新创业潜力取得了丰硕成果。


巴西制定了5G网络实施战略、国家物联网推进计划等一系列科技创新战略与政策,进一步强化国家层面创新发展的目标任务,确定生物技术、绿色能源、信息技术为今后科研创新的关键领域,着力推动与美欧日等传统科技强国的双边科技合作以及金砖国家合作机制下的多边合作等在内的一系列国际科技创新合作。


巴西侧重为汽车行业2030计划、新科技补贴计划、创新信贷4.0计划等重大项目提供资金支持。


巴西重视高校、科研院所、小微企业等不同主体在创新创业领域的作用,建立了多个科技园区和企业孵化器。巴西较为重视小微企业的发展,建立了小微企业交流平台和小微企业及其产品信息数据库,帮助小微企业发挥自身优势,同时为小微企业发展提供信息保障。目前,巴西新建企业孵化器超过300个,“在孵”企业超过2000家,累计提供就业岗位超过5万个。创新创业活动促进了巴西小微企业的发展,2022年巴西小微企业注册数量(存量)增长到了1000万以上,贡献了其国内生产总值的28%。


法国 France


明确重要研究基础设施 大力支持高科技初创企业


2022年,法国明确了对科研格局发展具重要战略意义的研究基础设施,同时再次明确,要大力支持高科技初创企业的发展。


3月,法国高等教育、研究与创新部发布新版《研究基础设施路线图》,明确了108个对法国科研格局发展具有重要战略意义的研究基础设施,路线图将成为法国制定未来研究基础设施领域相关战略的主要参考。此次路线图新增了27个研究基础设施,主要分布在生物与健康(7个)、材料科学与工程(4个)、地球系统与环境科学(4个)、天文学与天体物理(4个)、核物理与高能物理(3个)、数字化与数学科学(2个)、科学信息(2个)等领域。


法国政府在2022年通过约50个项目,在全法征集到1752个创新投标项目,对其公共投资达84亿欧元。法国再次明确目标,大力支持高科技初创企业,力争实现每年产生500家由研究人员创建的研究型初创企业。



2022年世界科技发展回顾 • 基础研究篇

 科技日报 科技日报 2023-01-04 08:52 发表于北京

◎ 科技日报国际部


俄罗斯 Russia


量子点用于医学与生物技术 俄数学家首获莉拉瓦蒂大奖

量子点是十亿分之一米大小的半导体晶体,由数千个原子组成。它能够在很宽的光带内吸收光并在很窄的波长范围内发射光,波长范围取决于纳米晶体的尺寸,同时量子点以严格定义的颜色发光。量子点的这些特性使其几乎成为生物对象的超灵敏多色配准以及医学诊断的理想手段。然而,大多量子点含有重金属成分,并且通常只在有毒有机溶剂中稳定,这限制了它们在生物学和医学中的使用。俄萨拉托夫国家研究型大学研制出稳定的量子点外壳,使其能够安全地用于诊断癌症和控制药物剂量。

此外,俄数学家首获莉拉瓦蒂大奖。2022年7月5日,国际数学联盟(IMU)在芬兰赫尔辛基阿尔托大学公布了今年的利拉瓦蒂奖获得者,其中包括俄罗斯科学院数学研究所数学普及与推广实验室主任尼古拉·安德列夫教授。这也是俄罗斯数学家首次获利拉瓦蒂大奖。

德国 Germany


中微子质量上限又有新纪录 量子计算多技术路线齐发力

2022年德国最重要的科学发现之一是卡尔斯鲁厄理工学院的国际氚中微子实验(KATRIN)获得了中微子质量的新上限:0.8eV(电子伏特),首次将中微子的质量推向亚电子伏特级,打破了中微子物理学中与粒子物理学和宇宙学相关的一个重要“界限”——1eV。这将有助于发现超越标准模型的新物理定律。

量子技术方面,为了拥有一台“德国制造”的强大量子计算机,德国在多条技术路线上齐头并进。例如,于利希研究中心与加拿大量子计算领先供应商D-Wave Systems合作,于2022年1月建成超过5000量子位的量子退火装置,这是欧洲首台实体商用量子退火计算系统。4月,于利希研究中心在拓扑量子计算方面取得重要进展,首次成功将拓扑绝缘体集成到传统的超导量子比特中。

此外,莱布尼茨计算中心与芬兰IQM公司合作,正在研发20个量子比特的量子计算机,并计划将其集成到一个超级计算机中。德国航空航天中心与初创公司QuiX Quantum合作,正在开发原型光子量子计算机。德国还开发出首个可编程光学量子存储器。德国和奥地利合作,研发出容错量子计算的基本构建模块,首次成功地实现了对两个逻辑量子位的一组计算操作。

在核聚变反应研究方面,德国的实验性仿星器受控核聚变装置(Wendelstein 7-X)进入连续运行的新实验阶段,预期目标是产生最长达30分钟的等离子体脉冲,温度达5000万℃。

日本 Japan


超低温与粒子研究成果迭出 量子计算机开发获重要突破

诺贝尔物理学奖获得者天野弘领导的一个研究小组成功对深紫外激光二极管(波长低至UV-C区)进行了世界上第一个室温连续波激光发射,代表这项技术朝着广泛应用迈出了关键一步。

日本科学家创造出了首个由准粒子构成的玻色—爱因斯坦凝聚态(BEC),这一成果将对包括量子计算在内的量子技术的发展产生重大影响。日本理化学研究所科学家首次在基于硅的三量子位量子计算系统内演示了纠错,向大规模量子计算迈出了重要一步,也为实现实用型量子计算机奠定了基础。日本国立自然科学研究院分子科学研究所(IMS)科学家使用光镊捕获两个冷却到接近绝对零度(-273.15℃,是所有原子停止运动的假设温度)且仅相隔一微米的原子,然后用仅发光10皮秒(1皮秒为万亿分之一秒)的特殊激光束操纵原子,成功执行了世界上最快的双量子位门,其运行时间仅为6.5纳秒(1纳秒为十亿分之一秒)。该成果有望催生全新的量子计算机硬件,突破目前正在开发的超导和离子阱量子计算机的限制。横滨国立大学研究人员找到了一种可精确控制量子比特方法,这一进展是朝着更大规模量子计算迈出的一步。

日本理化学研究所和东京工业大学参与的一个国际研究小组利用重离子加速器,生成了过剩中子数达16个的新同位素——钠39,确认了钠同位素束缚中子数的限值。

日美科学家在实验室将镱原子冷却到绝对零度之上十亿分之一摄氏度,这一温度甚至比最深的深空还要冷,他们造出的冷却物质甚至比太空中已知最冷的区域——旋镖星云还要冷。

日本国立聚变科学研究所与美国威斯康星大学合作的研究团队,首次在世界上发现了大型螺旋装置中等离子体在热量逸出时,湍流的运动速度比热量快。这种湍流的特征使预测等离子体温度的变化成为可能,对其观测或将导致未来开发出一种实时控制等离子体温度的方法。

大阪大学研究团队在日本量子科学技术研究开发机构用超强J-KAREN激光照射世界上最薄、最强的石墨烯靶材,从而实现了直接高能离子加速,开启了激光驱动离子加速的新机制。

日本科学家在开发容错量子计算机方面取得重要突破。他们验证了硅双量子位门保真度,超越了容错计算机的阈值(99%)。日本理化学研究所研究团队创建了双电子量子位,实现了99.8%的单量子位保真度和99.5%的双量子位保真度。研究结果首次使自旋量子位在通用量子控制性能方面与超导电路和离子陷阱相抗衡。

美国 The US


量子计算机模拟全息虫洞 核聚变实现“净能量增益”

在基本粒子研究领域,麻省理工学院科学家借助机器学习算法,通过分析大型强子对撞机(LHC)2018年获得的130多亿次重离子碰撞产生的数据,首次发现了神秘的“X”粒子。美国能源部(DOE)费米国家加速器实验室对撞机探测器(CDF)合作项目科学家实现了迄今为止对W玻色子质量的最精确测量。波士顿学院团队发现了被称为“轴向希格斯模式”的新粒子,这是一种以前无法检测到的量子激发,也是著名的希格斯玻色子的磁性相对粒子,有助于解释暗物质。美国国家点火装置(NIF)有史以来第一次成功在核聚变反应中获得“净能量增益”,即产生的能源大于消耗的能源。

在量子领域,美国能源部阿贡国家实验室和芝加哥大学的科学家实现按需读出量子位,并将量子态保持完整超过5秒,从而创下新纪录。微软Azure量子系统朝着创建拓扑量子位迈出了关键一步,其研究人员发现“马约拉纳零模”现象的证据,构建了可扩展的拓扑量子比特,这是其建造通用量子计算机计划的关键,或将为拓扑量子计算铺平道路。科学家还利用谷歌的“悬铃木”(Sycamore)处理器对全息虫洞进行量子“模拟”,这一成果代表着人们距离在实验室研究量子引力的目标又近了一步。美国亚马逊云科技量子网络中心和哈佛大学的科学家开发出一种新型量子存储器,能纠错且寿命或相干时间超过2秒,为创建可扩展的量子网络铺平了道路。美国研究人员还公布了一种经典—量子混合算法,可减少量子比特在处理化学方程式时产生的统计误差或噪音,这是有史以来在真正的量子设备上进行的最大规模的量子化学计算。

法国 France


LHC三年升级完毕重启 物质世界研究成果颇丰

2022年,位于法瑞边境的欧洲核子研究中心大型强子对撞机(LHC)3年升级完毕重新启动,在不到一年的时间内斩获颇丰。

4月,LHC的紧凑渺子线圈(CMS)合作组对顶夸克的质量进行了迄今最精确的测量,新测量出来的质量值误差不超过0.22%。研究人员表示,精确了解顶夸克的质量对于科学家们在最小尺度上理解宇宙至关重要。

7月,粒子家族喜迎新成员,LHC上底夸克探测器(LHCb)实验合作组宣布,他们观察到3种新粒子:一种新“五夸克态”和首对“四夸克态”,后者包括一种新“四夸克态”,这一最新发现将帮助物理学家更好地理解夸克如何“成群结队”形成复合粒子。

10月,CMS合作组发表论文称,他们对希格斯玻色子的质量分布——“宽度”作了迄今最精确测量:3.2兆电子伏特。这与标准模型预测一致,但比此前测量更精确,此前测量仅指出其宽度必须小于9.2兆电子伏特。

11月,LHC开展测试,铅原子核被加速并发生了核子—核子碰撞,对撞能量创下5.36太电子伏特的最高能量纪录,为2023年以后开展的铅—铅对撞奠定了基础。欧洲核子研究中心指出,该对撞测试是LHC开展大型重离子对撞机实验的一个重要里程碑。

12月,LHC研究团队发表论文认为,由反质子和反中子组成的轻反原子核或能在银河系中穿越很长的距离。这一发现表明,这些反原子核或能用于寻找暗物质。

英国 The UK


量子重力仪走出实验室 粒子物理研究深入极微

在基础研究领域,英国科学家所取得的进展主要集中于量子技术、粒子物理等。

2022年2月,伯明翰大学科学家发表研究称,世界上首台非实验室条件下的量子重力梯度仪问世,其可找到隐藏在地下的物体,对学界、业界和国家安全等方面将产生深远影响。10月,布里斯托尔大学等机构开发出了第一个真正可扩展的算法,在量子计算机上揭示了强关联电子系统的重要特性,有望催生更高效的太阳能电池。

在粒子物理学领域,小小的粒子激起了科学家们无限兴趣。英国科学家制造出一种新型“纳米皮氏培养皿”,并在此基础上首次拍摄到单原子在液体中“游泳”的图像,这一成果有望促进制氢等绿色技术的发展。此外,英国物理学家在冷却到接近绝对零度的隔离室中捕获了单个电子,并对其关键的量子特性——磁矩进行了测量,这是科学家迄今对单个粒子进行的最精确测量,有助揭示在最小尺度上可能会发生的新物理现象。

牛津大学发表了一个粒子物理学的基础数学新理论,有望揭示物理学家长期以来一直试图解决的难题。包括朴茨茅斯大学科学家在内的一个国际团队,则利用来自太空和地面望远镜的新数据,在外太空检验了爱因斯坦的引力理论。英国和德国的科学家团队发现,当二维电子系统暴露于太赫兹波中时,会产生一种新物理效应——“平面内光电效应”,这一最新发现有望催生更灵敏的太赫兹探测器,可广泛应用于安全、医学、通信等领域。

以色列 Israel


巨资投入量子计算 双轨并行强调自主

2022年,以色列正式加入全球量子计算机研制竞赛。

2月下旬,以色列创新局和国防部联合宣布将投资6190万美元,建立以色列首台国有量子计算机。该计划由“双轨”同时运行:创新局负责牵头在一年内建造一台20比特的量子计算机,该计划可能与外国公司合作,但要求外国公司必须在以色列国内建立“实体”,其目标是在以境内建立研制量子计算机的知识基础,包括培训以色列工程师;国防部则在学术界和工业界的支持下领导建立一个“国家量子能力中心”,该中心将具备研制量子计算机的全部能力,使以色列未来能够在不依赖外国实体的情况下建造和运行本国的量子计算机。

3月下旬,以色列魏兹曼研究所基于“离子阱”技术研制出一台5比特量子计算机,成为以色列首台量子计算机,标志着该国成为全球为数不多的可以研制量子计算机的国家之一。同时,魏兹曼研究所还在研制一种规模更大的量子计算机,据称可能达到64量子比特,最快将在一年后推出。

7月,以色列国有量子计算机计划取得进展。以创新局宣布将投资2900万美元,建设一个由以色列初创公司“量子机器”领导的量子计算研究中心,该中心将开展超导量子比特、冷离子和光学计算等3种量子处理技术的研究,并负责建造以色列国有首台量子计算机。

韩国 South Korea


加大量子计算与互联网开发 推进量子领域国际标准制定

韩国政府及基础科学研究界认为,未来5年是量子生态系统中一个非常重要的转折点,如果现在不加快对该领域的投入,今后将远远落后于技术领先国家。

2022年6月初,韩国科学技术信息通信部长官李宗昊参观韩国标准与科学研究院(KRISS)量子计算实验室,同时宣布开发50量子比特量子计算机和量子互联网。为此,韩国政府发起了一个由数十家研究机构和私营公司组成的工作组,计划在2026年底前开发一台50量子比特的量子计算机。

量子互联网方面,韩国正在建设基于量子密码通信技术的800公里国家网络,相关技术由韩国宽带互联网服务运营商SK电信提供。SK电信方面表示,通过引入软件定义的网络技术,实现动态高效的网络配置,以提高网络性能和监控能力,可快速灵活地应对流量的突然增加。同时,该融合网络具有出色的可扩展性,因为它只需添加量子密钥分发(QKD)即可轻松形成量子加密服务部分,实现了基于量子力学的加密协议。

在制定国际标准方面,韩国也在不断发力。6月,韩国电子通信研究院量子技术研究组长朴成洙被任命为国际电工委员会“量子技术标准化评价组”主席。韩国业界认为,韩国人担任量子计算、量子通信、量子传感器等量子技术领域国际标准组织的标准化评估组主席,有望在未来的国际标准化进程中积极体现韩国技术,在抢占量子科技领域的国际标准方面占得先机。

2022年世界科技发展回顾 • 数字技术篇

 科技日报 科技日报 2023-01-05 09:26 发表于北京
◎ 科技日报国际部

俄罗斯 Russia


抢占数字技术高地开发6G网 拟定微电子技术发展战略

为抢占数字技术发展的制高点,2022年,俄罗斯计划发展6G技术,正在计划制定微电子技术发展国家战略,也加大了对数字人才的培养力度。

俄决定绕过5G直接开发6G网络。无线电制造科学研究所和莫斯科斯科尔科沃科学技术研究院将在2025年前获得300多亿卢布,用于开发国产6G国内通信设备的联合项目,包括从原型到生产的设备开发、组件基础问题以及监管框架的开发和新网络的电磁安全研究。预计6G设备可以在2025年之前研制成功。

俄工贸部正在制定2030年前俄罗斯微电子技术发展国家政策构想。工贸部建议市场参与者通过开发具有现代标准的微电子产品,创建电子机械制造业并在电子仪器设计中放弃外国架构。到2030年将投资约3.19万亿卢布用于国产半导体生产技术、国内芯片和数据中心基础设施开发、人才培训等,到2022年底实现90纳米国产芯片制造,2030年实现28纳米国产芯片。

莫斯科电子技术学院承接了俄贸工部开发制造芯片的光刻机项目,首期投资6.7亿卢布资金。该计划使用X射线技术开发全新的EUV光刻机,不需要光掩模就能生产芯片。

为防止人才大量流失,俄政府出台了对IT行业的支持措施,包括对IT企业3年内免缴所得税和不高于3%的优惠贷款,对IT人才给予优惠住房按揭、延期征兵等。

日本 Japan


利用仿生技术开发机器人 单芯片数据传输创新纪录

2022年,日本科学家在机器人技术、计算机元件制造、机器学习等领域取得更多成果,为该国数字技术的进一步发展奠定了坚实的基础。

在智能机器人方面,京都大学和名古屋大学研究人员从脊椎动物的进化中汲取灵感,开发出新的自动化方法来设计机器人,以同时改进它们的形状、结构、运动和控制器组件。理研先锋研究中心领导的国际团队设计了一种远程控制的半机械蟑螂系统,可通过太阳能电池供电,有望推动半机械昆虫更快走进现实应用。北海道大学科学家成功开发出世界上第一个利用集群策略工作的微型机器人,首次证明分子机器人能够通过集群策略完成货物递送,运输效率是单个机器人的5倍。

在计算机技术领域,丹麦、瑞典和日本的科学家将数据分成一系列色彩包,使单个计算机芯片能通过光纤电缆,在7.9公里范围内,每秒传输1.84千万亿比特(PB)数据,创下单芯片作为光源传输数据的新纪录,有望催生性能更优异芯片,提升现有互联网的性能。日本科学家制造了三维垂直场效应晶体管,可用来生产高密度数据存储器件。

在机器学习方面,九州大学与东京大学合作,开发了一种嗅觉传感器,与机器学习相结合,这种“人造鼻”能对多达20个人进行身份验证,平均准确率超过97%。东京大学研究团队开发的机器学习算法,将超过10万成年人的睡眠数据转化为16种不同的睡眠模式,有助于构建新的失眠诊断方法,开发对应的治疗策略。

英国 The UK


人工智能应用于更多领域 计算机研究深入光电结合

英国科学家在人工智能(AI)领域取得多项突破,包括用AI首次控制核聚变、用AI预测蛋白质结构等。“深度思维”与瑞士洛桑联邦理工学院合作,训练了一种深度强化学习算法来控制核聚变反应堆内过热的等离子体并宣告成功,有助加速无限清洁能源的到来。“深度思维”凭借“阿尔法折叠”算法,预测了迄今被编目的几乎所有2亿多个蛋白质的结构,破解了生物学领域最重大的难题之一,有助于应对抗生素耐药性,加速药物开发并彻底改变基础科学。该公司研发的“DeepNash”(深度纳什)学会了在“西洋陆军棋”游戏中,使用虚张声势等欺骗手段来击败人类对手。该公司AI创建的高效数学算法能解决矩阵乘法问题。该公司AI通过模拟数十年足球比赛的情况,学会了熟练地控制数字代理足球运动员,其建模的“AI代理”可与其他人工代理沟通合作,在玩游戏时共同制定计划。

牛津大学研究显示,AI能模拟条件反射进行联想学习,比传统机器学习算法快千倍。利兹大学科学家借助AI扫描视网膜以探知心脏病风险。

在计算机相关领域,牛津大学研究人员开发了一种使用光偏振来实现最大化信息存储密度的设备,其计算密度比传统电子芯片提高了几个数量级。南安普顿大学工程师则与美国科学家携手,设计了一种与光子芯片集成的电子芯片并创造出一种设备,能以超高速传输信息同时产生最少的热量。

在机器人领域,利兹大学团队开发了一种“磁性触手机器人”,直径只有2毫米,可由患者体外的磁铁引导进入肺部狭窄的管道采样。帝国理工学院科学家展示了一组受动物启发的飞行机器人,可在飞行中建造3D打印结构,未来有望用于在偏远地区建造房屋或重要基础设施。格拉斯哥大学科学家将由砷化镓制成的微型半导体打印到柔性塑料表面,所得设备的性能可与目前市场上最好的传统光电探测器媲美,且能承受数百次弯曲,可用作未来机器人的智能电子皮肤。苏格兰科学家开发出了一种先进的压力传感器技术,有助于改进机器人系统,如用于机器人假肢和机械臂。

德国 Germany


提出新“数字化战略” 成立6G研发行业联盟

2022年,德国提出了新的“数字化战略”,同时强调人工智能的主导作用并致力于开发6G技术的潜能。

德国联邦政府提出新的“数字化战略”,全面建立互联、可持续的数据文化将成为未来几年德国科研领域的关键任务。具体包括:“国家研究数据基础设施NFDI”数据库建设;欧洲云计划盖亚-X和数据空间的互联互通;加强科研领域数据资助计划;扩大超级计算中心的数字化基础设施,提高数据加工能力等。在大数据方面,德国正积极推动建立一个统一的欧洲出行数据空间,并将德国工程院发起的“出行数据空间”视为灯塔项目。

在人工智能领域,德国政府决定每年资助柏林学习和数据基础研究所、慕尼黑机器学习中心等5个人工智能能力中心各5000万欧元,以确保德国在人工智能领域的技术主权。欧洲高性能计算联合体决定在德国于利希研究中心建造欧洲第一台百亿亿级超级计算机,德国政府将为这台超级计算机提供5亿欧元的资助。

德国也成立了6G研发行业联盟,29家企业和研究机构将研究6G技术的潜力,到2025年,德国6G研究计划将共获得7亿欧元的资金。

美国 The US


AI预测蛋白质结构获突破 智能机器人多领域显身手

美国的数字经济主要在人工智能(AI)、超级计算机以及智能机器人等领域发力:超级计算机“前沿”在全球独占鳌头、人工智能预测了6亿多种蛋白质结构、开发出水陆两用的毫米级折纸机器人等。

在计算机科学领域,国际超算组织宣布,位于美国橡树岭国家实验室的超级计算机“前沿”在2022年国际超算Top500榜单中拔得头筹,成为现今世界上运行速度最快的超级计算机,算力高达每秒1.1百亿亿次。

在AI方面,元宇宙平台公司(Meta)研究人员利用人工智能ESMFold预测了来自细菌、病毒和其他尚未被表征微生物的6亿多种蛋白质的结构。加州大学圣地亚哥分校工程学院的纳米工程师开发了一种AI算法,可几乎即时地预测任何材料的结构和动态特性。麻省理工学院工程师采用类似乐高的设计,创建出一款可堆叠、可重新配置的AI芯片。

在智能机器人领域,斯坦福大学科学家开发了水陆两用的毫米级折纸机器人。西北大学工程师开发出有史以来最小的像螃蟹一样的遥控步行机器人。北卡罗莱纳州立大学研究人员开发出迄今游泳速度最快的“蝴蝶机器人”。麻省理工学院工程师开发了一种远程机器人系统,可帮助外科医生对中风或动脉瘤患者进行快速远程治疗。约翰斯·霍普金斯大学研究团队设计的智能组织自主机器人STAR在没有人类指导的情况下,对猪的软组织进行了腹腔镜手术,这是向机器人最终在人体上实施全自动手术迈出的重要一步。
法国 France


提高电子器件制造能力 加强数字规则制定工作

2022年,在数字技术领域,法国的发力点集中于提升本土电子元器件的制造能力,以及加强数字规则的制定和管理工作。

7月,法国政府发布《电子工业战略》,旨在提高本土电子元器件制造能力。政府将投入50亿欧元,重点采取三方面措施:发展法国本土电子元器件制造能力,推动创新型技术的产业化应用;支持科研机构开展颠覆性技术研究,鼓励企业在此基础上开拓新兴市场;通过教育培训加强人才供给,提高法国从业人员的竞争力。

与此同时,法国正式启动“电子2030”计划,旨在保持法国电子工业的领先地位,应对从上游研究到下游应用以及整个产业链当前和未来面临的挑战。法国政府将在2022年至2026年为意法半导体和另外14家参与“欧洲共同利益重点项目之微电子和通信技术”(IPCEI ME/CT)项目的主要法国企业提供财政支持。在先进制程方面,意法半导体重启10纳米工艺节点的研发进程。

在数字规则方面,法国作为欧盟轮值主席国,推动欧盟层面在2022年先后出台《数字权利和原则宣言》《数字服务法案》和《数字市场法案》,修订《网络和信息系统安全指令》。法国则在成员国层面就如何实现率先对数字税实施征管进行了具体部署。

韩国 South Korea


提升AI产业竞争力 加强数字危机管控

韩国希望从数字时代的追击者跃升为数字时代的先导国家,致力于提升本国在人工智能(AI)产业的竞争力,同时加强对数字危机的管理和控制。

韩国总统尹锡悦表示,将把韩国AI产业竞争力提升至全球第三,并把数据市场规模扩大一倍,达到50万亿韩元(约合人民币2513亿元)以上。韩国政府面向数字经济时代的主要构想在于从数字时代的追击者跃升为数字时代的先导国家,具体包括:打造全球顶级水平的数字力量;扩大数字经济的覆盖范围;提升数字经济的包容性;构建政府数字平台;推动数字文化创新。

韩国科学技术信息通信部召开网络服务安全检查会议时表示,将以信息技术领先企业Kakao服务瘫痪事件为契机,新设“数字危机管控本部”,同时加速开发卫星互联网技术和火灾危险性较小的电池技术以应对灾难发生。韩国kakao服务因火灾中断服务为全球信息技术企业敲响警钟,发展数字经济的同时必须将基础设施安全摆在重要位置。

以色列 Israel


推行军事智能战略 AI民用百花齐放

2022年,以色列的人工智能技术在民用和军用领域的应用百花齐放。

1月,以色列特拉维夫大学和伊奇洛夫医院联合开发了一个人工智能程序,用于处理血液感染患者的电子病历,通过患者检测数据和病史,判断其病情是否会进一步恶化为严重疾病。

SightBit公司宣布其正在使用人工智能技术处理海滩监控摄像头数据,以自动判断水中游泳人员是否存在危险,该技术已经在以色列城市阿什杜德测试超过1年。Biolojic设计公司使用人工智能技术设计的抗体“AU-007”已在澳大利亚开展临床试验,成为人类首个由计算机设计并进入临床试验阶段的抗体,结果显示,“AU-007”在包括19只小鼠的动物实验中完全消除其中10只的肿瘤组织,并显著抑制了其他9只的肿瘤发展。

在军事领域,以色列国防军宣布,采取一项新战略,在武装部队的各个分支机构中整合和使用人工智能,融合处理从空中、地面或海上收集的相关数据,为武装部队创建一个通用的作战图。

巴西 Brazil
 

电子商务普及如火如荼 数字农业发展方兴未艾

巴西政府正大力推动信息通信技术建设,积极向数字服务转型,未来将着力研究网络安全与国家物联网计划,同时培训相关领域的科研人员,重点打造智慧城市、现代医疗、绿色农业和高端制造等核心产业。

巴西国家地理研究所公布的数据显示,预计到2060年,巴西65岁以上人口的比例会超过1/4。为此,巴西开设了一些针对老年人的数字技术学习项目,取得了良好的效果。例如,该国实施的“在最好的年纪畅游互联网”计划,通过举办免费课程,发掘老年人使用互联网的潜力。

新冠疫情使巴西民众的消费观念发生巨大变化,首次尝试网购的人数迅速增长,带动了电子商务的发展。今年上半年巴西电子商务销售额同比增长31%。

巴西数字农业发展方兴未艾。传感器、无人机、应用程序、软件和管理系统、卫星图像、喷雾器和自动收割机在农村地区已经成为了现实。如巴西东北部皮奥伊州大拜沙杜里贝罗市迎来该国首个采用5G技术的农场,农场主可以实时监测动物健康状况,并利用无人机拍摄和传输的高清图像提高田间日常工作效率。农场还配备有能够自主作出智能决策的机器人,包括拖拉机、收割机等在内的农业机器获得了更大自主性,农场的生产效益预计可提升20%至30%。

2022年世界科技发展回顾 • 空间技术与宇宙探索篇

科技日报 科技日报 2023-01-06 08:40 发表于北京

◎ 科技日报国际部


俄罗斯 Russia



重建航空工业生产体系 启动“球体”卫星群项目


2022年,俄共完成22次航天器发射任务,其中包括向国际空间站发射2次“联盟”号载人飞船和2次“进步”号货运飞船。原定于9月发射“月球-25”号探测器的任务,因探测器所用的多普勒速度和距离传感器性能不符合要求被推迟到2023年发射。


航空界是俄受美西方制裁最严重的领域。由于制裁,波音和空客公司均已宣布不再向俄出售飞机和零部件及相关服务,这严重影响俄航空运输业的生存和发展。为此,俄立足自力更生,紧急制订生产苏霍伊超级100型客机、图-214客机和MS-21客机的计划,重建航空工业生产体系。首批采用国产零件的MC-21客机计划于2024年交付。


7月,俄国有航天集团公司表示,俄罗斯将向外国伙伴履行其在国际空间站方面承担的所有义务,但已决定在2024年之后退出空间站,之后,俄罗斯国有航天集团公司将开始组建俄罗斯轨道站。10月,俄利用“联盟-2.1b”运载火箭成功发射了第一颗“球体”项目卫星“斯基泰人-D”。它将成为未来宽带互联网接入“斯基泰人”系统技术的演示卫星,是“球体”卫星群的一部分。而“球体”卫星群项目计划发射600颗卫星,为地面提供互联网服务,类似美国太空探索技术公司的星链系统。


日本 Japan



首次带回“龙宫”气体分析 地外“生命之源”证据首现


日本宇宙航空研究开发机构的“隼鸟2号”探测器首次从小行星“龙宫”上带回气体,对这些气体开展分析能揭示“龙宫”小行星的历史,有助于科学家们进一步梳理太阳系的演化历程。日本科学家在“隼鸟2号”采集的样本中检测到20多种氨基酸。这是首个在地球外存在氨基酸的证据,对理解这些至关重要的有机分子如何到达地球具有重要意义。样品分析还表明,地球上的水可能是由太阳系外缘的小行星带来的,最新研究揭示了数十亿年前海洋在地球上如何形成的奥秘。


北海道大学科学家研究发现,组成DNA和RNA必不可少的嘧啶碱基可能是由富碳陨石带来地球的。科研团队分析了3颗富碳陨石,除了之前在陨石中已检测到的化合物,还首次发现了达到十亿分比浓度的各种嘧啶碱基,如胞嘧啶和胸腺嘧啶。研究结果表明,这类化合物或经由光化学反应产生,通过陨石抵达地球,其对于早期生命的遗传学功能或起到了重要作用。


德国 Germany



制定太空战略观测地球 测试高超音速飞行技术


2022年,德国联邦政府开始制定新的太空战略,重点之一是气候变化背景下的地球观测,包括避免和清除空间碎片等。欧空局则公布未来3年欧洲太空计划,筹资169亿欧元,优先支持艾瑞斯低轨卫星互联网星座、地球观测项目Future EO、阿丽亚娜6型火箭研发与产业化,以及月球和火星探测等项目。


航天研究方面,德国首次成功测试了欧洲运载火箭阿丽亚娜6号的上级。德国近海太空港联盟建造一个浮动发射平台的计划继续推进。德国研制和建造的第一颗高光谱卫星EnMAP成功发射。具体技术方面,德国成功研发完全集成在标准笔记本电脑上的卫星移动控制系统V3C,可在不依赖天线以外的其他基础设施的情况下控制卫星;开发了用于卫星的新一代激光反射器,可在没有电的情况下工作;研发出一种高功率、单模垂直腔面发射激光器(VCSEL),可应用在太空高度陀螺仪中。


2022年,德国与国际空间站的合作伙伴一起进行了用一颗卫星捕获另一颗小卫星的模拟实验。德国通过飞行实验STORT成功测试了高超音速飞行技术的组件结构、测量方法和评估算法。带有效载荷的火箭第3级达到了每小时约9000公里的飞行速度,对应的马赫数超过8,持续时间约120秒。德国和西班牙的导弹制造商正牵头研发一种新型高超音速防御拦截器,未来将整合到一套能够预警、跟踪和拦截高性能空中威胁(包括弹道导弹和高超音速飞行器)的系统中。


航空研究方面,德国航空航天中心利用跨学科研究方法,不断提高自动化、数字化和虚拟化水平。例如,通过“远程塔台中心”项目验证了一个控制中心为多个机场提供空中交通服务的可行性;围绕纯电动、氢燃料电池、氢燃料或可持续航空燃料(SAF)飞行推进了一系列研发项目;首次在计算机上模拟了蝶阀从设计到生产和测试的完整数字化开发步骤链等。


美国 The US



韦布深空探索之旅开启 登月计划首次任务完成



2022年7月,美国国家航空航天局(NASA)公布了詹姆斯·韦布空间望远镜(以下简称韦布望远镜)升空半年多以来拍摄的首批全彩照片。8月,韦布望远镜首次捕捉到太阳系外行星大气中存在二氧化碳的明确证据。9月,韦布望远镜发布了其拍摄的首张火星红外图像,捕获了整颗行星的大气数据。11月,韦布望远镜发现已知最早星系……它带来的宇宙发现仍在继续。


经过多次推迟之后,搭载“猎户座”飞船的巨型探月火箭“太空发射系统”11月16日凌晨从佛州肯尼迪航天中心发射升空,开启“阿尔忒弥斯1号”无人绕月飞行测试任务。完成了为期25.5天的无人绕月飞行任务后,“猎户座”飞船于12月11日在墨西哥下加利福尼亚州附近的太平洋上溅落,结束了“新阿尔忒弥斯”登月计划的首次任务,为未来几年将开展的人类绕月航行进行了一次返回地球的高风险测试。这是继50年前“阿波罗17号”登陆月球后、美国重返月球的重要一步。


美国暗能量光谱仪(DESI)项目打破了之前所有3D星系调查的纪录,创建了有史以来最大、最详细的宇宙地图。美国天体物理学家对宇宙的组成和演化设置了迄今为止最精确的限制。NASA首次实现将人类从地球“全息传送”到太空。


在太空商业旅游方面,4月9日,首个纯私人团队抵达国际空间站。5月,美国佛罗里达大学研究团队首次在月壤中成功培育出植物。


美国华盛顿州立大学研究发现,将少量模拟碎火星岩石与钛合金混合,在3D打印过程中制成一种更坚固、更高性能的材料,可用于制造探索这颗红色星球的工具和火箭部件。这一突破可以使未来的太空旅行更便宜、更实用。


NASA表示,系外行星档案馆迎来65个新成员,人类已发现的系外行星总数随之突破5000颗大关。此外,NASA喷气推进实验室正在开发一个新概念,将允许智能手机大小的机器人在宇宙海洋中“遨游”,以寻找生命的迹象。


英国 The UK



描绘超四分之一北方天空 破解首批类星体形成之谜


2022年,英国科学家将目光投向更深邃的宇宙深处,作出了一系列重要发现。


杜伦大学天文学家与一个国际科学家团队合作,使用泛欧射电望远镜低频阵列(LOFAR)绘制了超过1/4的北方天空,显示了大约440万个数十亿光年外的天体,其中包括100万个以前没有被发现的天体。


苏塞克斯大学科学家通过证明黑洞具有“量子毛发”特性,解决了斯蒂芬·霍金此前提出的黑洞悖论问题。


困扰天文学界20年之久的首批类星体形成之谜最终被破解:朴茨茅斯大学科学家发现,第一批类星体是在早期宇宙中罕见气层的剧烈湍流条件下自然形成的,最新研究还颠覆了多年来人们对宇宙中第一个超大质量黑洞起源的看法。


在系外行星上搜寻生命存在迹象一直是宇宙探索领域的目标之一,埃克塞特大学利用韦布空间望远镜,首次从太空中直接为一颗系外行星拍摄了照片,有助于更好地研究这些行星的化学性质。英国自然历史博物馆科学家也在坠落英国的陨石中发现了地外水。


杜伦大学科学家借助超级计算机,模拟了地球和一颗原行星碰撞后可能产生的影响,得出结论称月球可能在数小时而非数千年内形成。


法国 France



投资建设卫星互联网 参与全球发射器竞争


2022年7月11日,法国泰雷兹联合高通和爱立信集团,计划在未来5年内通过环地小卫星群实现智能手机直接连接卫星通信,以便在地面天线未覆盖的区域提供5G覆盖,从而提供一种介于卫星电话系统和星链等卫星互联网服务商之间的服务。该项目计划投资80亿欧元。泰雷兹负责建造卫星,高通负责提供智能手机,爱立信负责安装地面核心网络。这一项目促成了电信公司和卫星公司在通信领域由竞争转向合作。


在太空规划和投资方面,法国于9月在巴黎举行国际宇航大会(IAC),宣布在未来三年内对太空领域投资超过90亿欧元,用于太空工业研发和扩展。在欧盟层面,欧洲空间局 (ESA)于11月举行峰会,决定未来3年的预算为169亿欧元,增长17%,但低于其总干事要求的185亿欧元。该资金主要由德、法、意三国提供,将分别注资35亿、32亿、30亿欧元。新资金使欧洲阿丽亚娜6号和织女星发射器继续计划成为可能,同时将为欧洲参与全球小型发射器竞争创造条件。欧盟还将为月球和火星探测器提供支持,以期与美国拓展登月和火星探测合作。


韩国 South Korea



“世界”号火箭发射成功 宣布太空发展基本计划


2022年6月21日16时许,韩国“世界”号在位于全罗南道高兴郡的罗老宇航中心成功发射升空,火箭携带的卫星进入预定轨道运行,这是韩国科学技术领域和韩国历史上具有里程碑意义的日子。


韩国政府于11月30日发布第四期太空发展基本计划(草案),提出有关发展太空事业的五大任务,即扩大太空探测范围、将载人航天器送入太空、布局太空产业、维护太空安全、开展空间科学研究。


韩国总统尹锡悦明确提出2032年登陆月球、2045年登陆火星的具体目标,但韩国学界对此提出质疑,因为韩国在航空航天领域的人才储备以及预算、技术水平客观上还无法支撑当前的计划。


巴西 Brazil



积极落实中巴航天合作 参与金砖联合观测项目


巴西是南半球唯一掌握航天技术的国家,拥有卫星、火箭、航天器和发射场。巴西政府将航天活动列于优先发展领域之首,巴西航天局制订的航天研究主要集中在地球观测、通信和气象等方面,同时巴西还将加强基础设施建设和人力资源培养。


中国是巴西在航空航天领域重要的合作伙伴,中巴两国航天部门积极落实《2013—2022年中国国家航天局与巴西航天局航天合作计划》,继续拓展在卫星探测、载人航天包括航天教育等方面的合作,在空间技术、空间应用、空间科学及地面设备、人员培训、测控支持、发射服务等领域搭建起全新合作平台。


中国巴西空间天气联合实验室和巴西巴拉州西部联邦大学,在2022年4月初开展了一项新合作,双方共同建设科研仪器设备及实现数据共享。这项合作成功地将偏远地区的桑塔雷姆市领进空间天气研究的国际传感器网络地图的一部分。这也是中国子午工程项目和巴西空间天气研究和监测计划之间共享的南美洲地磁仪网络的最新仪器。


在国际合作方面,2022年5月25日,金砖国家成立航天合作联合委员会,正式开启了金砖国家遥感卫星星座联合观测及数据共享合作。星座由金砖国家现有6颗卫星组成,包括中国的高分六号卫星和资源三号02星、中国和巴西联合研制的中巴地球资源卫星04星、俄罗斯老人星五系1颗星以及印度资源卫星二号和二号A星。巴西航天局局长卡洛斯·莫拉表示,金砖国家航天机构之间建立“遥感卫星虚拟星座”,建立数据共享机制,将有助于应对人类面临的全球气候变化、重大灾害和环境保护等挑战。


以色列 Israel



推动民营航天创新 卫星探月成绩斐然


2022年,以色列加大对民营航天产业的支持,并取得多项太空技术成就。


1月6日,以色列创新局宣布向11家民营航天公司资助600万美元,用于研发新型太空技术。上述公司涵盖太空物联网、小卫星、太空新材料、月球制氧、先进传感器、霍尔推进器等诸多技术领域。未来5年,创新局计划资助1.8亿美元持续支持民营航天产业发展。


3月,以色列国防企业“拉斐尔”推出了“超高分辨率和高重访卫星星座”,其卫星全重仅为200千克,可融合装备有新型合成孔径雷达和光电探测设备,对地成像分辨率小于30厘米,同时其可通过星座轨道设计,实现对地面目标的重访时间小于10分钟,即可间隔数分钟连续拍摄同一地面目标。


6月,以色列国防部OFEK卫星计划获得“2022年以色列国防奖”。2020年,以色列发射OFEK-16卫星,是OFEK计划的第三代卫星,重约300—400公斤,轨道高度600公里,对地成像相机孔径为0.7米,像素达到30兆,分辨率约为50厘米。


以色列航天非营利组织SpaceIL正在紧锣密鼓地准备在2024年或2025年发射该国第二个月球探测器,其首个探测器在2019年落月失败坠毁。该计划将搭载多个月球实验装置:8月底首个实验项目确定,其内容是测试药物在月球上的稳定性,由以色列希伯来大学负责;10月,以色列本古里安大学和澳大利亚昆士兰科技大学研究团队宣布将利用该探测器开展月球植物生长实验。


2022年世界科技发展回顾 • 生物医学篇

 科技日报 科技日报 2023-01-09 11:02 发表于北京
◎ 科技日报国际部

俄罗斯 Russia



研发第四款通用新冠疫苗 推进新冠药物临床试验

俄罗斯研发出一种近乎通用的新冠疫苗Convasel,这是自新冠疫情以来俄研发的第四款疫苗。该疫苗是基于新冠病毒核衣壳蛋白(N蛋白)的重组亚单位疫苗,用于肌肉注射,由俄联邦生物医学署下属的彼得堡疫苗与血清研究所研制。该疫苗可启动不同的免疫防御机制,阻止新冠感染的发展,无论病毒表面蛋白如何突变,该疫苗总是具有很高的免疫原性和保护性,几乎是一种通用疫苗,可用于18—60岁的成年人。2022年9月,该疫苗已经开始用于全俄接种。

2022年4月,由俄加马列亚流行病与微生物学国家研究中心研发的基于单克隆抗体的抗新冠病毒(包括抗奥密克戎的其他变异毒株)药物开始临床试验,该药物此前在临床试验前的动物身上的研究表明可提供100%的保护。二期临床试验结束后将在俄卫生部申请药物注册。

俄新冠疫苗“卫星-V”被证明对HIV阳性人群有效,成为全球首款对接受抗逆转录病毒治疗的艾滋病病毒(HIV)阳性人群有效的新冠疫苗。

俄科学院托木斯克国家研究医学中心药理学和再生医学研究所发现,氙气吸入可有效治疗新冠感染呼吸衰竭。

日本 Japan



首次对昆虫进行基因编辑 获得RNA分子进化经验证据

在生物技术领域,日本京都大学研究人员开发出一种CRISPR-Cas9基因编辑方法,可对蟑螂进行基因编辑。山梨大学科学家开发了一种冻干体细胞的方法,可兼容整只动物的克隆。这一成果是遗传物质存储研究方面取得的新进展。东京理科大学开发了一种新改进的单细胞RNA测序(scRNA-seq)技术,结合了遗传检测灵敏度、反应效率的稳健性和细胞组成的准确性等优点,使研究人员能够捕获重要的细胞信息。

日本研究人员还开发出一种基于抗体的新方法,用于快速可靠地检测新冠病毒,且不需要血液样本。三重大学、东京大学及理化学研究所等组成的研究团队,成功开发出了对新冠病毒具有高防护效果的鼻喷疫苗。

在生物化学及分子生物学领域,东京大学研究人员首次根据达尔文进化论创造出一种可复制、具有多样化和发展复杂性的RNA分子,这提供了首个经验证据,证明简单的生物分子可导致复杂且逼真系统的出现。该校团队还提出了一种塑造着丝粒分布的两步调节机制。研究表明,细胞核中的着丝粒结构在维持基因组完整性方面发挥着作用。东京大学、日本高能加速器研究机构(KEK)、中国武汉大学与德国波恩大学合作,首次见证了在真菌中不使用角鲨烯就形成三萜类化合物,发现在活有机体中实现由简单化合物到复杂化合物的生物合成,或为制药科学开辟新途径。

在细胞生物学领域,日本理化学研究所综合医学科学中心科学家主导的国际合作研究发现,在人类每个细胞的基因组中,重复数百万次的特定基因组序列重组普遍存在于正常细胞和疾病状态的细胞中。确定这种曾被认为是“垃圾”的DNA序列的重组机制,对于了解人体细胞如何发育以及是什么导致它们“生病”至关重要。神户大学和广岛大学的科学家成功开发出一种生物标记物——药物代谢酶细胞色素P450,只需30毫升血清样本,就能快速、廉价地诊断是否患帕金森病,有助厘清导致该疾病的分子机制并催生帕金森病新疗法。

英国 The UK



致力研究“多功能”疫苗 开发光免疫疗法清除癌细胞

剑桥大学科学家发现,以前感染普通冠状病毒不太可能对抗或加重新冠病毒感染。卡迪夫大学科学家首次详细说明了新冠病毒脂质包膜的分子组成,并指出它可能成为抗病毒药物的重要新靶点。谢菲尔德大学和美国斯坦福大学研究人员使用机器学习,确定了1000多个与新冠危重症状发展相关的基因,还识别出这些基因在其中起作用的特定类型的细胞。

在疫苗研发领域,牛津大学研究人员开发出一种“多功能”的“马赛克-8”疫苗,可保护人们免受新冠病毒未来变种、严重急性呼吸综合征(SARS)、中东呼吸综合征(MERS)等冠状病毒新毒株的影响。

在癌症研究领域,包括英国科学家在内的一个科研团队开发了一种光免疫疗法,可“点亮”并清除癌细胞。伦敦癌症研究院科学家发现,一种经过基因改造的疱疹病毒可“变身”癌症克星,而GREM1蛋白是调节胰腺癌细胞类型的关键。爱丁堡大学和格拉斯哥大学则借助基因数据和机器学习算法,预测人们未来罹患白血病的风险。伦敦大学学院开展的全球首例新型CRISPR疗法效果显著,实验性碱基编辑技术“治愈”了一名白血病女童。

在人脑研究领域,剑桥大学等机构的科学家描述了覆盖人类整个生命周期的大脑发育标准参考图,未来可用于全年龄段的脑健康数字化评估和疾病诊断。弗朗西斯·克里克研究所的科学家则开发了一种成像技术,可在亚细胞水平捕获脑组织结构和功能的信息,有助科学家构建出大脑中神经网络的完整图景。剑桥医学研究理事会科学家发现,人脑深层区域经常超过40℃,特别是白天时女性的大脑,这些发现可提高对脑损伤的认识、预后和治疗。

在长寿研究领域,爱丁堡大学科学家发现了两种可影响人类寿命和健康的血液蛋白——载脂蛋白a(LPA)和血管细胞黏附分子1(VCAM1)。巴布拉汉研究所科学家开发出一种名为“成熟期瞬时重编程”的新方法,可逆转“衰老时钟”,让皮肤细胞“返老还童”30年。

牛津大学研究发现,在荷兰发现的一种新艾滋病病毒(HIV)毒株——HIV-1亚型病毒(VB),与HIV-1原始毒株相比,其毒力更强,能使感染者以两倍的速度发展成艾滋病。

此外,牛津大学科学家首次在实验室制造出由生物相容性材料制成的人工神经细胞,将来有望用于合成组织,以修复心脏或眼睛等器官。桑格研究所、瑞士苏黎世大学科学家及其合作者绘制了第一张组成人类免疫系统的连接网络的完整图谱,展示了人体内免疫细胞是如何连接和交流的。

巴西 Brazil



实施“巴西生物技术计划” 刺激多领域研发与创新

2022年,巴西科技与创新部推进实施“巴西生物技术计划”,旨在促进本国在生物技术领域的进步,刺激新技术转让,同时推动该领域的国家研究、发展和创新政策。该计划通过动员、协调和资助行动,促进公共和私营部门在知识和技术的联合开发与转让方面开展合作,以期创造财富、提高就业和促进国家经济增长。主要目标是:使公共和私营部门及科学界普遍获得先进的生物技术基础设施;促进增强人力资源能力,改善巴西生物技术现状,克服限制该领域充分发展的瓶颈问题。

具体内容包括:推动生物技术领域的研发和创新项目以及产品、工艺和服务的开发;充分发挥每个生物群落(包括亚马孙、卡廷加、塞拉多、大西洋雨林、潘塔纳尔、潘帕)、沿海和海洋地区的区域机会和潜力,促进生物技术的科学发展和产业发展;促进和保持专门的人力资源培训进程;加强和构建生物技术研究网络;加强创新环境建设;在巴西全境部署推广调度平台和生物资源中心;加强生物技术国际合作。

法国 France



新冠疫苗加强针获批 复活最古老史前病毒

2022年11月,法国制药巨头赛诺菲与葛兰素史克联合研发的新冠疫苗加强针VidPrevtyn Beta被欧盟批准,可用于已经通过其他获批疫苗进行基础接种的人群。欧洲药品管理局(EMA)在其声明中表示,根据对参与者血液分析的研究得出结论是,在恢复对新冠病毒的防护方面,加强针至少与辉瑞的第一代疫苗一样有效。

赛诺菲在2021年9月宣布放弃mRNA候选新冠疫苗研发,转而与葛兰素史克合作研发重组蛋白新冠疫苗(含佐剂),赛诺菲负责开发疫苗,葛兰素史克负责提供一种可提高其功效的佐剂。赛诺菲2022年6月表示,其加强针将可能防止多个变种,包括奥密克戎的不同变种。

11月,法国科学家复活了在西伯利亚永久冻土中冷冻了数万年的7种病毒,其中最年轻的病毒已经被冷冻27000年,最古老的病毒被冷冻约48500年,是迄今复活的最古老病毒。

德国 Germany



疫苗红利激励生物医药发展 高精成像用于癌症手术

2022年,欧洲药品管理局(EMA)先后批准了德国生物新技术/辉瑞和莫德纳公司针对奥米克戎变种BA.1、BA.4和BA.5的改良疫苗。

新冠病毒研究方面,汉堡大学发布了高度精准的新冠病毒模型,约25个刺突漂浮在病毒包膜中。萨尔大学研究发现,针对抑制炎症分子而形成的特殊自身抗体是新冠mRNA疫苗诱发心肌炎的原因。乌尔姆大学通过化学方法优化聚苯乙烯磺酸聚合物,有望开发预防新冠病毒感染的广谱药物。

癌症研究方面,德累斯顿大学开发出用于癌症手术的高精度成像方法,借助短波红外光、荧光染料和先进的相机,未来有可能在手术期间识别肿瘤边缘的单个癌细胞。德国癌症研究中心发现,线粒体RNA中的某些化学标记会增加线粒体中的蛋白质合成,从而促进癌细胞的侵袭性扩散;一种癌细胞信使导致了手术切除原始癌症病灶后会出现危及生命的转移;蛋白质GFAP有可能作为阿尔茨海默症的一种潜在的早期生物标志物。

脑研究方面,欧洲人脑计划团队开发的多层次于利希人脑图谱可将大脑网络与其基础解剖结构相关联,帮助研究精神疾病和衰老障碍。图宾根大学和波恩大学研究发现,大脑中的神经元会在某些数学运算中受到特别激发,一些神经元仅在加法期间活跃,而其他神经元在减法期间活跃。马克斯·普朗克研究所发现,从视网膜深入到大脑的特殊神经通路使斑马鱼能够识别和接近同伴鱼;人类抑制性中间神经元网络比此前已知的要多;果蝇神经细胞的生物物理基础,为单个神经细胞的计算能力提供了新见解。

以色列 Israel



新冠药物效果积极 四针疫苗获证安全

2022年,尽管以色列对新冠疫情采取了较为开放的态度,但作为生物医学技术强国,以色列仍然在新冠药物、检测和疗法研究上取得较多成果。

3月,以色列Ziv医疗中心开始向所有新冠中度和重症患者提供Amorphical公司研制的本土新冠药物AMOR-18,其在临床试验中展示出了明确且积极的效果。

5月,以色列Virusight诊疗公司宣布,其基于人工智能和光谱检测技术的新冠检测设备可在20秒内检测出唾液样本中的新冠抗原和病毒颗粒。在意大利针对550样本的检测实验显示,其总体灵敏度高达92.7%。

7月,特拉维夫大学发表论文称,使用先进的高压氧疗法可有效改善长期新冠症状,特别是无法集中注意力、脑雾、健忘等认知问题。

11月,特拉维夫大学和健康服务组织“马卡比”的研究团队发表论文称,通过跟踪近1.8万名第四针新冠疫苗接种者的健康情况,结果显示接种第四针疫苗与25种不良反应没有关联,接种第四针疫苗后的反应与第三针疫苗相比没有显著差异。

美国 The US



加强新冠相关研究 生物医学技术进展不小

在新冠病毒研究方面,美国研究人员发现新冠药物研发新靶点Nsp13蛋白。另有团队发现ACE2受体蛋白“纳米气泡”可防治新冠。得克萨斯大学西南医学中心团队确定新冠病毒构建RNA“帽子结构”的机制,这对病毒的成功复制至关重要。

在新冠感染诊断方面,约翰斯·霍普金斯大学开发出一种新冠病毒传感器,可同时提高检测准确性和速度;研究人员还发现,花椰菜和其他十字花科植物有望成为对付新冠病毒的有效武器;美科学家还发现,新冠嗅觉丧失症由炎症而非病毒本身所致;研究人员还利用CRISPR技术,成功预防并治疗了实验鼠的新冠感染,这是首次借助该技术来治疗新冠感染。

在艾滋病研究方面,科学家通过一种脐带血移植的突破性疗法治愈了一名艾滋病病毒(HIV)女性感染者。威斯塔研究所研究人员首次证明,一种独特的类天然三聚体能在小鼠体内形成Tier-2中和抗体,为开发艾滋病疫苗带来了希望。2022年7月,全球出现第四位被宣布“治愈”的艾滋病患者。

在癌症研究方面,莱斯大学科学家使用针头大小的可植入“药物工厂”持续提供高剂量白细胞介素-2,在6天内根除了小鼠体内的晚期卵巢癌和结直肠癌。科学家还开发出一种可根据CT扫描图像预测癌症的AI工具,能提前几年预测哪些人会罹患胰腺癌,准确率约为86%。纽约纪念斯隆凯特琳癌症中心进行的一项小型临床试验发现,14名接受实验性免疫治疗的直肠癌患者全部康复,这是癌症治疗史上首次取得这样的成果。

在再生医学领域,哈佛大学与埃默里大学研究人员利用人类干细胞来源的心肌细胞制造出一种完全自主的“人造鱼”。阿拉巴马大学伯明翰分校医学院研究人员成功将转基因猪的两个肾脏移植到了脑死亡的人体内,这意味着有望增加可移植器官的数量。一名来自墨西哥的20岁女性成为世界第一个通过3D打印技术成功进行耳朵移植的人,标志着再生医学领域的重大进展。

此外,美国科学家首次在不使用精子或卵子的情况下创造了合成小鼠胚胎,使其在子宫外生长。这些胚胎在一个特别设计的生物反应器中发育,完全来自培养皿中培养的干细胞。这项实验标志着人类首次在子宫外培育出完全合成的小鼠胚胎。


2022年世界科技发展回顾 • 能源环保篇

科技日报 科技日报 2023-01-10 08:47 发表于北京

◎ 科技日报国际部


俄罗斯 Russia



提出新型中子吸收剂方法 增强核反应堆安全可控性

高温气冷堆是第四代核电堆技术,具有安全性好、效率高、经济性好、用途广泛等优势。高温气冷堆通过核能—热能—机械能—电能的转化实现发电,能够代替传统化石能源,实现经济和生态环境协调发展。这种类型的反应堆可产生电力和高温热量,用于制氢、海水淡化和中央供热,无需充电即可运行约10年。这些品质使高温气冷堆成为确保向难以到达地区(如极北地区)的定居点和企业供应能源和热量的最佳解决方案。

托木斯克理工大学提出了一种用于高温气冷核反应堆的新型中子吸收剂方法——使用气态三氟化硼作为核燃料所释放中子的吸收剂。使用新吸收器不仅有助于更有效地控制核反应,它的浓缩版本也非常适合安全紧急中止反应堆。三氟化硼的主要优点是能够在高达1000℃的温度下保持气态并且不会分解。这种化合物的毒性很大,但在室温下在普通水中会完全中和。该研究成果有助于大大提高自20世纪中叶以来开发的这类反应堆的安全性。

德国 Germany



能源安全战略先行 氢能旗舰项目推进

2022年气候变化在德国引发广泛关注,德国也多管齐下确保能源安全,包括继续推进氢能项目等。

2022年夏季,欧洲森林火灾导致的温室气体排放量为2007年以来最高。德波边境的奥得河发生大量鱼类死亡的生态灾难。欧洲激进的环保组织不惜通过污毁艺术品,阻塞交通要道,甚至破坏企业生产设备等行为来引发公众对环保和气候变化的关注。

海洋和气候变化研究方面,阿尔弗雷德韦格纳研究所取得了一系列成果:发现气候变化可能会改变并加剧北冰洋的季节性酸化,对海洋生物具有深远影响;根据卫星数据估算北极全年的冰层厚度和体积;发现塑料泛滥已蔓延到北极的所有栖息地;建议在超过生态临界点之前阻止海洋不可逆转的塑料污染;成功在南极获取首批包含远古历史气候数据的钻芯;绘制了北极中部气候过程的第一张完整图景,发现北极的变暖速度是地球其他地区的两倍多;开始建造“流星4代”远洋科考船等。

德国政府尽力确保能源供应安全,推出了“气候与转型基金”,从2023年到2026年,将提供约1775亿欧元用于促进环保、可靠和负担得起的能源供应和气候保护。

德国耗资7亿欧元的氢旗舰项目也继续推进,电解槽的规模化和系列化生产、海上风电无并网制氢、氢运输技术均取得进展,氢能经济发展步入正轨。另一方面,德国还在探索利用微生物和阳光可持续生产氢;与日本合作,把氨作为氢的载体,研发新型综合反应堆技术。

英国 The UK



颁布能源安全战略 重启氘氚聚变实验

在节能减排、加大脱碳力度、向新能源和可再生能源转型方面,英国制定了能源安全战略,并取得了多项进展。

2022年4月,英国政府正式公布新的《英国能源安全战略》,旨在“促进长期能源独立、安全和繁荣”,生产更多“清洁”和“负担得起”的能源。根据这份战略,未来英国将在核能、海上风电、氢能等可再生能源领域加大投资,力争到2030年英国95%的电力将来源于低碳能源。

英国原子能管理局等机构称,世界上规模最大的核聚变反应堆欧洲联合环状反应堆(JET)中产生了能量输出为59兆焦耳的稳定等离子体。这是自1997年以来,世界首次进行的氘氚核聚变实验。

剑桥大学使用一种广泛存在的蓝绿藻为微处理器持续供电了一年,该系统具有以可靠和可再生方式为小型设备供电的潜力。曼彻斯特大学领导的国际研究团队,开发了一种利用光和光催化材料,在常温常压下将甲烷直接转化为液态甲醇的快捷方法,这一成果不仅有助于节能减排,且能获得经济收益。剑桥大学还设计出一种超薄、灵活的设备,就像“人造树叶”,其灵感来源于光合作用,能生产一种可持续的汽油替代品,这种设备成本低、足够轻,可以漂浮在水上而不会占用陆地空间。

美国 The US



气变研究揭示塑料污染 高效热机助力电网脱碳

2022年,美国在气候变化和环境研究方面取得多项成果,也开发出一些有效的节能减排技术和产品。

在环境研究方面,加州大学戴维斯分校一项研究显示,微塑料可将陆地上的病原体带入海洋,可能会对人类和野生动物的健康造成影响。洛斯阿拉莫斯国家实验室发现,北极气温上升速度是全球变暖的4倍。麻省理工学院研究团队发现,地球拥有一种“稳定反馈”机制,已运行数百万年,可随时间推移自我调节温度。斯克里普斯海洋研究所首次在南极洲冰层以下的沉积物中发现一个巨大的地下水系统。

在推动环保的创新技术方面,美国能源部劳伦斯·伯克利国家实验室和加州大学伯克利分校科学家报告了一种能够完全回收的、可生物降解的打印电路,这能一进步让垃圾填埋场中的可穿戴设备和其他柔性电子产品分流,减轻重金属废物对健康和环境的危害。莱斯大学将回收利用的汽车废塑料变成石墨烯,并通过一种节能技术将其用于制造新的汽车部件。得克萨斯大学奥斯汀分校科学家研制出一种新的酶变体,能在几小时到几天内分解正常情况下需要数百年才能降解的塑料,有望大大推动塑料的回收利用,真正开启塑料循环经济。

罗格斯大学开发了一种可生物降解的植物性涂层,可喷在食品上,防止病原微生物和腐败微生物入侵以及运输破坏。国家可再生能源实验室和麻省理工学院工程师设计了一种没有运动部件的热机,以超过40%的效率将热能转化为电能,优于传统蒸汽轮机,在推广可再生能源和实现完全脱碳电网的道路上迈出了至关重要的一步。

法国 France



新计划重新启动核能 加大支持可再生能源

为按时完成脱碳目标,2022年,法国重新拥抱核能,也加大了风能、太阳能以及氢能等可再生能源的支持力度。

2月,总统马克龙宣布其连任当选法国总统后的长期能源计划,包括重启核能,目标是在2050年前建造6座新的第二代欧洲先进压水堆,延长核电站使用期限至50年,并明确提出“不再有关闭目标”。

在可再生能源方面,根据“法国2030”计划,法国将投入10亿欧元用于可再生能源的研发,计划到2050年建成50个海上风力发电场,实现风电产能达40吉瓦的目标;太阳能发电装机容量将增加10倍,达到100吉瓦以上。法国还将继续投资水力发电站以及沼气利用等可再生热能开发。

法国还提出在30年内将能源消耗减少40%,加速工业设备脱碳和住房节能改造,大力发展新能源汽车和氢能产业。

氢能方面,法国政府11月宣布“已保证2吉瓦电解水制氢设备”,并重申发展绿氢是工业脱碳的支点之一。法国氢能战略路线图设定的目标是,到2030年建成6.5吉瓦电解水制氢设备,年产绿氢70万吨。此外,欧盟委员会公布两批氢价值链“欧洲共同利益重大项目”(IPCEI),其中包括法国提交的17个,法国将为这批项目投资21亿欧元。

日本 Japan



发布新氢能路线图 研发多款节能产品

2022年,日本政府发布了新的氢能路线图,日本科学家也开发出多款节能产品,同时注重废物的回收和再利用。

3月,日本经济产业省发布了新版《氢能与燃料电池路线图》,旨在到2030年将能源结构中氢能的使用占比提高。

在节能减排产品研发方面,日本国家材料科学研究所开发了一种耐用的钙钛矿型太阳能电池,面积仅为1平方厘米,能在阳光下以超过20%的光电转换效率连续发电1000多个小时,可用于开发轻型多功能太阳能电池。日本科学家还开发出一款新碳捕集系统,能直接从大气中清除二氧化碳,效率高达99%,且捕集二氧化碳的速度至少是现有系统的两倍,成为迄今处理空气中低浓度二氧化碳最快的捕集系统,有望开启直接空气捕集新时代。

在废物回收利用方面,东京大学开发的技术可将食品残渣转化为建筑水泥,这是世界上首个完全使用食物制作水泥的工艺。科学家利用回收稻壳创造了首个硅量子点LED灯。此外,量子科学技术研究开发机构利用高性能离子导体作为锂分离膜,开发出超高纯度锂(99.99%)回收技术以及离子导体锂分离技术,可从车载锂离子电池中低成本回收超高纯度锂,作为电池原料,将制造电池原料的氢氧化锂成本降至进口价格的一半以下。

以色列 Israel



投资气候技术创新 鼓励新能源企业发展

以色列将自身定位为全球气候技术的领导者。截至2022年初,仅在新能源领域,以色列就有100余家各种企业,涵盖能源传输、能源存储、新能源发电等方面,而所有与气候技术相关的企业数量达到700家。

在促进气候技术创新方面,2022年5月,以色列能源部和以色列创新局与美国能源部合作,宣布提供400万美元用于开发创新的清洁能源技术,例如研发碳捕获等技术,减少天然气和其他相关基础设施对气候的影响。6月,以色列政府宣布未来5年将投资8.7亿美元促进气候技术创新,其目标是到2026年将以色列全国气候领域注册专利、初创企业和在国家科研基础设施上开展的技术试点项目翻一倍。以色列创新局和能源部也宣布,向3家企业投资近百万美元创新能源技术,上述企业分别从事能源存储、电动汽车快速充电、利用无人机诊断太阳能电池板故障等技术研究。

在氢燃料电池领域,以色列巴伊兰大学宣布其化学系教授埃尔巴兹领导的研究团队正在研制“氢基可逆燃料电池”用于能源存储,且已经通过了概念验证阶段,该技术有可能彻底改变能源存储和生产方式。

韩国 South Korea



修复核电产业生态 通过碳中和路线图

2022年,韩国采取多种手段修复核电产业生态,同时大力发展氢能。

韩国政府修复核电产业生态的举措包括:组建并启动提升核电竞争力的特别工作组,意在探索提高核电产业竞争力的方案;在庆尚南道昌原等地打造核电产业生态圈;要求已有核电站快速复工;加大企业支持力度,发布《核电产业合作企业支援对策》和《核电站中小企业支援方案》。韩国政府2022年还向核电站合作企业招标925亿韩元的工程,到2025年为止提供1万亿韩元以上的新工程。对那些面临生存危机的核电站零部件公司,韩国政府承诺提供1000亿韩元的政策资金和3800亿韩元的金融支持。

韩国科学技术信息通信部11月审议通过《碳中和技术创新战略路线图》。根据该路线图,在二氧化碳的捕集、利用与封存方面,韩国将在日本海气田实施综合实证项目,争取到2030年和2050年,二氧化碳全年储存量分别达400万吨和1500万吨。在氢能生产与供给方面,韩国将为企业研发大量储存、远程气体运输等技术提供支持,力争实现生产与供给氢能2030年达194万吨、2050年达2970万吨的目标。此外,韩国争取到2030年推广450万辆氢能汽车,为此对下一代电池汽车进行实地验证,同时研发防止电池火灾的技术。

巴西 Brazil



加快电力结构调整 发布气候中和战略

2022年,巴西政府加快电力结构调整,大力发展非水可再生替代能源。巴西也宣布了实现2050年气候中和承诺的战略措施。

巴西的光伏发电累计装机容量已从2012年的7兆瓦增长到2021年的约13吉瓦,已成为全球第三大可再生能源市场,光伏发电已是巴西最具竞争力的可再生能源。巴西太阳能光伏发电协会预测,光伏行业在2022年为巴西增加超过35.7万个新工作岗位。根据评估,到2030年,光伏行业投资有望超过500亿雷亚尔(约合98.5亿美元)。

巴西致力于应对气候变化带来的不利影响,提出了2030年温室气体排放量将在2005年基础上减少50%的新目标。巴西也宣布实现2050年气候中和承诺的战略措施,包括到2028年实现零非法毁林、到2030年恢复和重新造林1800万公顷,以及鼓励扩大国家铁路网等。巴西还加入了《全球甲烷协议》,并宣布制定“减少甲烷排放国家计划——零甲烷”,该计划将致力于通过减少甲烷排放创造经济资源。

此外,巴西农业、畜牧业和供应部宣布了《适应气候变化和低碳排放的农业可持续发展部门计划(2020—2030)》,旨在通过减缓温室气体排放来促进巴西农业可持续发展,重点推广包括节约型灌溉系统、集约化牲畜饲养在内的农业科技手段,力争在2030年前实现农牧业减少排放11亿吨碳当量的目标。

巴西能源部发布的《生物燃料法案》称,到2030年巴西能源结构中的生物燃料消费将从现在的300亿升左右提高到500亿升,这将使巴西在未来10年中减少6.7亿吨二氧化碳排放。巴西交通部也出台指导性法规,推动巴西零碳汽车市场的发展,目标是提高电动汽车在巴西市场的份额,从目前全国汽车总销量的2%增至10%,并在巴西建设1万个公共充电站。


2022年世界科技发展回顾 • 新材料篇

科技日报 科技日报 2023-01-11 09:36 发表于北京
◎ 科技日报国际部

俄罗斯 Russia



碳纳米纤维增加铝材硬度 开发智能玻璃制造新技术

铝及其合金是现代工业和技术的关键材料之一。俄罗斯国家研究型技术大学科研人员将碳纳米纤维添加到铝复合材料中,使其硬度增加了20%,材料结构在微观层面上也发生了极大变化。这项研究不仅改善了特定铝合金的性能,而且对许多铝及其合金部件都具有重要的实际意义。

别尔哥罗德国立研究大学基于铁、钴、镍、铬和碳开发出了高强度、高延展性合金,在-150℃及更低温度下具有出色的性能,强度比最好的同类产品高一倍半,并具有24%的出色延展性。新合金可广泛用于探索太空、海洋、北极和南极所需的技术系统。

托木斯克理工大学科研人员提出了一种利用激光和石墨烯对玻璃进行改性的技术,开发出基于石墨烯和玻璃的复合材料。这种技术允许用石墨烯“画出”所需的结构,将其融合到几毫米厚的玻璃中,有助于在玻璃产品中制造出石墨烯导电结构,作为积成电子产品的基础,最终实现用石墨烯制造新一代电子产品。新材料可长时间使用而性能不降低,可用于开发廉价高效的柔性电子产品、新型光电器件以及具有扩展功能的各种玻璃产品。

俄罗斯国立研究型技术大学超硬和新型碳材料研究所与俄罗斯科学院西伯利亚分院物理研究所首次合成一种基于含钪碳纳米结构的富勒烯超硬材料。研究表明,电与不含钪的聚合富勒烯晶体相比,该材料的刚性较低,但同时相变压力也较低,这能降低该结构的实验室获取难度。该技术可用于研发适用于光伏、光学器件、纳米电子学和生物医学的新型超硬材料。

法国 France



开发便宜无毒新型热电材料 DNA微机器人探索细胞过程

法国CRISMAT实验室研究人员开发出安全且廉价的热电材料,该材料由铜、锰、锗和硫组成,生产过程相当简单。他们使用球磨机简单将铜、锰、锗、硫粉末机械合金化,形成一个预结晶相,然后在600℃下烧结使其致密化,所生产的新型材料可将热能转化为电能且在400℃下仍能保持稳定。研究人员发现,用铜代替一小部分锰会产生复杂的微结构,具有相互连接的纳米域、缺陷和相干界面,会影响材料的电子和热传输特性。未来研究人员将进一步改进这种新型无毒热电材料,替代传统含铅、碲等有毒元素的材料。

法国国家健康与医学研究院、国家科学研究中心和蒙彼利埃大学研究人员使用DNA折叠方法,即用DNA分子作为构建材料,以预定义的形式自组装3D纳米结构,制成DNA纳米机器人,可用来更好地了解细胞机械敏感性的分子机制,并发现对机械力敏感的新细胞受体,还能在细胞水平更精确地研究施力过程中,生物和病理过程的关键信号通路何时被激活。

日本 Japan



新系统按需合成光气衍生品 机械手指上“长出”仿真皮

日本神户大学研究小组首次成功开发出以氯仿为前体的新型流式按需合成系统,使用这个系统能够合成光气衍生的化学产品。此外,他们实现了超过96%的高转化率,在短时间内(一分钟或更短的曝光时间)合成了这些有用的化合物。该系统具有多重优势,安全、廉价且简单,对环境影响小,可用于合成各种化工产品并连续大量生产。研究人员预计,该系统可以在不久的将来扩大为工业生产的模型系统。

大阪大学研究人员开发出一种方法,将一个不显眼的可食用标签嵌入食物中,无需先破坏食物即可读取相应数据,而且这种标签完全不会改变食物的外观或味道。

信州大学纤维工程研究所材料科学家开发出一种由超细纳米线编织而成的纺织品。这种线由相变材料和其他材料制成,与电热和光热涂层结合在一起,最终成为一种面料,能根据需要对不断变化的温度做出反应,在穿着者身上升温或降温。

东京大学科学家在机器人身上制作出“活的”类人皮肤,不仅为机械手指提供了人类皮肤般的质感,还具有防水和自愈功能,让人们离科幻目标又近了一步。

名古屋大学研究团队合成了一种带状分子纳米碳,具有扭曲的莫比乌斯带拓扑结构,即莫比乌斯碳纳米带。构建结构均匀的纳米碳,对于纳米技术、电子学、光学和生物医学应用中的功能材料的发展至关重要。

韩国 South Korea



“元表面”纳米材料可调谐 新聚合物常温下能生物降解

2022年10月,韩国蔚山科学技术院科研团队研发出可作为6G通信元器件的“元表面”新纳米材料。“元表面”材料是平面光学器件中新型的纳米结构材料,以二氧化钒为基础,呈透明状。实验表明,该二氧化钒“元表面”透明电极在保持一定的太赫兹波通过的同时,还可调谐电导率至数千倍左右,成为6G通信元件或太赫兹波、近红外线混合通信技术的最佳器件材料。该方法还可用于其他二维物质材料的研发和应用。

11月,韩国亚洲大学团队以磷酸金属盐作为催化剂开发出一种新型生物降解聚合物PBAT(属于热塑性生物降解塑料,是己二酸丁二醇酯和对苯二甲酸丁二醇酯的共聚物,兼具PBA和PBT的特性),其制成的可降解塑料在土壤中的降解速度约是现有可降解塑料的9倍。新型PBAT聚合物通过在生产过程中添加一定量的磷酸金属盐,使其结构变成离子键的结合形式,既具备耐久性,又可在常温下生物降解。

德国 Germany



“四中子态”最明确证据发布 人工智能助力新材料设计优化

材料基础研究方面,慕尼黑工业大学获得了迄今最明确地证实“四中子态”物质存在的证据,有助于更好地理解宇宙是如何形成。慕尼黑工业大学和德累斯顿工业大学合作,在氟化钬锂中发现了一种全新相变,并观察到成千上万个原子的纠缠,这对于研究材料中的量子现象以及新应用来说是一个重要基础和一般参考框架。

合金材料方面,马克斯·普朗克钢铁研究所成功将人工智能技术应用于高熵合金的设计和优化。研究人员利用699种合金的公开数据训练学习算法,然后让算法生成大量具有低热系数的候选成分,再通过包括原子特征和热力学数据库的有关物理特性的算法筛选出17种高熵因瓦合金,最终确定出两种在300开氏度时具有极低热膨胀系数的高熵合金。

催化剂方面,亥姆霍兹柏林研究所等研发出纳米结构的硅化镍作绿氢催化剂,可显著提高电解水反应的效率。科林公司成功开发了一种廉价稳定的合金材料催化剂,可用二氧化碳直接电解生产一氧化碳。

纳米材料和应用方面,德国电子同步加速器实验室(DESY)阐明了分子马达的结构、完整的功能循环和作用机制。慕尼黑工业大学首次成功使用DNA折叠法制造出一款分子马达,可自组装并将电能转换为动能,未来有望用于驱动化学反应。埃尔朗根—纽伦堡大学研发迄今世界上最小的可运动的能量驱动齿轮,该装置只有1.6纳米大小,由两个啮合组件共71个原子构成。

生物相关材料方面,莱布尼茨交互材料研究所开发出可与生命物质交流和发挥作用的材料,并成功将活性细胞分裂机制整合到合成囊泡中,使人们离生产功能性合成细胞的目标又近了一步。慕尼黑工业大学设计了一种新型葡萄糖燃料电池,厚度仅400纳米,可将葡萄糖直接转化为电能。德累斯顿工业大学首次演示了一款高效有机双极晶体管,为有机电子学开辟了全新前景。

此外,德国地球科学研究中心成功合成具有六方晶格的锗化硅材料,可有针对性地控制带隙和光电特性。该中心还开发了一种新方法,可在高于正常大气压110万倍的压力下测量二氧化硅玻璃的密度。马克斯·普朗克量子光学研究所开发了一种新的分子气体冷却技术,可将极性分子冷却到几纳开氏度。

英国 The UK



薄膜硅光伏电池吸收率创纪录 新催化剂降低氢燃料电池成本

英国与荷兰科学家合作,借助一种纳米纹理结构,使薄膜硅光伏电池变得不透明并增强了其吸收太阳光的效率。实验表明这种薄膜电池能吸收65%的阳光,是迄今薄硅膜表现出的最高光吸收率,接近约70%的理论吸收极限,有望催生柔性、轻质且高效的硅光伏电池。

帝国理工学院开发出一种氢燃料电池,它使用的催化剂由铁而非稀有昂贵的铂制成,降低了氢燃料电池的成本。该技术让氢燃料广泛部署成为可能,有助于减少温室气体排放,推进世界走上净零排放的道路。

伦敦玛丽女王大学研究团队首次研制出单晶有机金属钙钛矿光纤,可加速宽带传输、改善医学成像。

伯明翰大学与美国杜克大学研究人员合作,利用糖基原料而非石化衍生物,研制出两种新的聚合物,既拥有普通塑料的特性,又可降解和物理回收。其中一种像橡胶一样可拉伸,另一种则像大多数塑料一样坚固且有韧性。

美国 The US



发现迄今最佳半导体材料 纳米研究带来高效新设备

在半导体科学领域,美国麻省理工学院、休斯顿大学和其他机构的一个研究团队发现,立方砷化硼兼具导电和导热优势,可能是迄今发现的最佳半导体材料。密歇根大学开发出一种半导体材料,可在室温下实现从导体到绝缘体的“量子转换”,有助于开发新一代量子设备和超高效电子设备。

在有关“打印”的各种应用中也有很多成果。研究人员使用定制打印机,3D打印出了首块柔性有机发光二极管显示屏,无需以往昂贵的微加工设备。北卡罗莱纳州立大学研究人员开发出一种将电子电路直接印刷到弯曲和波纹表面上的新技术,并使用该技术制造了原型“智能”隐形眼镜、压敏乳胶手套和透明电极,这为各种新的柔性电子技术铺平了道路。美国国家标准技术研究院科学家报告了一种利用糖在几乎任意共性表面上进行转印的方法,有望为电子、光学和生物医学工程等领域带来新材料。

在纳米级的材料研究方面,麻省理工学院研究人员通过改变材料的表面,创建了一种纳米级配置,能将闪烁体的效率提高至少10倍,甚至可能提高100倍,有助实现更灵敏X射线成像;该学院还在单原子薄材料中发现了一种奇异的“多铁性”状态,首次证实多铁性可存在于完美的二维材料中,为开发更小、更快、更高效的数据存储设备铺平道路。约翰斯·霍普金斯大学研究人员设计出由微小纳米管组成的无泄漏管道,可自我组装和自我修复,且能连接到不同的生物结构,这是创建纳米管网络的重要一步,该网络将来有望向人体中的靶细胞提供专门的药物、蛋白质和分子。

莱斯大学开发出由可见光而非紫外线激活的纳米级“钻头”,通过对真实感染的测试,证明这些分子机器能有效杀死细菌。

在传感器相关研究方面,斯坦福大学科研团队报道了一种极富弹性的可穿戴显示器,具有很好的明亮度和机械稳定性,是高性能可拉伸显示器和电子皮肤研究的重要进展。麻省理工学院工程师展示了一种新型超声波贴纸设计,仅邮票大小,可贴在皮肤上,对内脏器官提供48小时的连续超声波成像。加州大学圣地亚哥分校工程学院研究人员开发出一种无电池、药丸状可吞服生物传感系统,能对肠道环境进行持续监测。

以色列 Israel



新型织物用于市政 创新材料服务医疗

2022年4月,以色列特拉维夫市政府宣布在该市试验一种新型太阳能织物,这种户外织物内含太阳能有机光伏电池,白天可为行人遮蔽阳光,晚上则可使用太阳能照明。这对夏季光照充足、炎热少雨的以色列非常适用。

7月初,以色列理工学院研究团队发表论文,称其开发出一种基于有机硅的超薄材料——一种高科技织物。这种材料可包裹在受损神经周围,近红外光可穿透皮肤照射到织物上,促使其产生电流刺激神经,从而加速神经修复或用于心脏起搏。实验显示,该材料将小鼠神经修复速度加快了1/3。

9月底,以色列理工学院研究团队宣布,受生物体天然矿物生长过程的启发,创造了一种控制材料磁性的方法。团队在存在氨基酸的情况下合成了碳酸锰晶体,通过测量晶体磁性,发现含有氨基酸的碳酸锰比原始材料具有更高的磁化率,这意味着它更容易受到外部磁场的影响。此外,随着添加更多的氨基酸,碳酸锰对磁性的反应性也会增加。研究证明可通过加入非磁性有机分子改变材料磁性,这一发现或可应用于微电子和医学等领域。